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Causal AI—A VISOR for the Law of Torts 

Gerhard Wagner*

* * * 

Causal AI is within reach. It has the potential to trigger nothing 

less than a conceptual revolution in the law. This Essay explains why 

and takes a cautious look into the crystal ball. Causation is an elusive 

concept in many disciplines—not only the law, but also science and 

statistics. Even the most up-to-date artificial intelligence systems do not 

“understand” causation, as they remain limited to the analysis of text and 

images. It is a long-standing statistical axiom that it is impossible to 

infer causation from the correlation of variables in datasets. This thwarts 

the extraction of causal relations from observational data. But important 

advances in computer science will enable us to distinguish between mere 

correlation and factual causation. At the same time, artificially 

intelligent systems are beginning to learn how to “think causally.” 

 

I. Causation—Invisible to Humans and Machines Alike 

 Causation is the bedrock element of tort law. It is common to 

almost any cause of action. Without proof of causation, there is no tort 

and no liability. In the context of liability regimes based on fault, 

causation provides the necessary link between the two other elements 

necessary for a finding of responsibility: breach of duty by the defendant 

and damage to a protected interest of the plaintiff. For systems of strict 

liability that dispense with the fault or breach-of-duty requirement, the 

importance of causation is even greater. In the arena of no-fault liability, 

the finding of causation between the risk created and the damage done 

carries much of the burden of attribution. 

 As important as causation is in the law, it is anything but 

exclusive to the legal system. Rather, causation is a basic concept of 

human thought in general and of science in particular. Without a sound 

understanding of cause and effect, no car would move, no airplane would 

fly, no medication would be available, and no food could be prepared. It 

is no wonder, therefore, that the analysis of causation is a topic not only 
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for lawyers, but also for scientists and philosophers. Where perspectives 

diverge and many different disciplines contribute, a stable consensus on 

what the concept actually means is difficult to attain. Causation is 

already a complex enough concept.  

 The rise of artificial intelligence poses additional challenges, 

primarily for artificial intelligence, not so much for conceptualizing 

causation. Causation is something of a threshold challenge for 

artificially intelligent computer systems. If a system can overcome this 

threshold, a whole new horizon of capabilities will open, and the law will 

be only one among a broad range of applications. Precisely because 

causation is such a fundamental concept in human thought, teaching 

computer programs how to identify causation would mean enormous 

progress. This is no mean feat, however. One of the pathbreaking 

philosophers thinking about causation is David Hume, and he famously 

believed that causation could not be observed in nature; it cannot be 

seen.1 All that can be observed is a series of events, one following the 

other. “We may define a cause to be ‘[a]n object precedent and contiguous 

to another, and where all the objects resembling the former are plac’d in 

like relations of precedency and contiguity to those objects, that 

resemble the latter’”; in other words where, if the first object had not 

been, the second never had existed. 

The force or mechanism that causes a billiard ball to move when 

hit by a cue remains hidden. For this reason, an artificially intelligent 

computer system cannot learn to identify causation with the help of 

image recognition. There are just no images of causation to display. 

Large language models, which are in fashion at the time of writing, 

remain powerless in the face of causation as well. This is not to deny 

that such software systems are able to scan written material for text 

that talks about causation. If a large language model digested many 

texts that say that the ground gets wet when it rains, it will certainly be 

able to produce the correct answer when asked what happens to the 

ground when it rains. But this is not to say that the system understood 

anything about causation. Rather, everything depends on the texts used 

for training. At best, models of this type will be able to replicate 

knowledge about causation that we already have. 

 The question to investigate in this Essay moves beyond this naïve 

use of the concept of causation by artificially intelligent systems. The big 
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question is whether a machine can be taught to think causally—to 

understand the meaning of the concept of causation. This requires that 

the meaning of causation can somehow be translated into computer 

code. It is imperative to program causal relationships in the sense that 

the computer system knows how to identify a situation of causal 

dependence (this is discussed in Part III). Before this possibility can be 

explored further, it is necessary to clear away some uncertainties and 

ambiguities that haunt the concept of causation in law as well as in 

economics (as discussed in Part II). As will hopefully become clear, the 

technological development has progressed to a point where “Causal AI” 

is within reach (see Part IV). If Causal AI works, it would equip the law 

of torts with something like a VISOR2—a visual aid that enables 

decision-makers to “see” causation, if only in the digital world.  

 

II. The Concept of Causation 

The concepts of cause and causation are part of everyday 

language. People can talk about causation in a non-technical sense 

without thinking about the meaning of the term. Using the concept of 

causation in a colloquial sense captures the better part of its proper 

meaning. 

 

A. Factual and Proximate Causation 

 In law, causation is a highly complex concept that comes in 

multiple layers. One fundamental distinction is between factual 

causation and proximate causation. While factual causation is about the 

factual relationship between the defendant’s conduct and the plaintiff’s 

harm, proximate causation determines whether the defendant is liable 

for all of the harm so caused or only for that fraction that is within the 

scope of the risk that was created by the defendant’s negligent or other 

conduct. 

Proximate causation thus involves a normative, not a factual, 

analysis. This leads to the obvious conclusion that “[t]he so-called 

proximate cause issue is not about causation at all.”3 In the present 

 
2 VISOR is a term from the Star Trek franchise, designating a visual 

aid that allows the blind to see. The acronym stands for Visual Instrument 

and Sensory Organ Replacement. 
3 DAN B. DOBBS, PAUL T. HAYDEN & ELLEN M. BUBLICK, HORNBOOK 

ON TORTS 338 (2d ed. 2016); see also David W. Robertson, The Common Sense 

of Cause in Fact, 75 TEX. L. REV. 1765, 1766 (1997). 

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4566356


12/06/24 U. Chi. L. Rev. Online *4 

context, it will be excluded from further analysis. The focus on factual 

causation alone raises questions that are complex enough, on which 

lawyers could certainly use some help from other sciences—and perhaps 

also from software tools that are artificially intelligent. 

 

B. Forward-Looking (Predictive) and Backward-Looking 

(Evaluative) Causation 

 The concept of factual causation can be analyzed from multiple 

angles. The economic analysis of law has added a fundamental 

distinction, rarely discussed among lawyers: namely, the one between 

forward-looking and backward-looking causation.4 Forward-looking 

causation examines, ex ante, the probability that an act or event of a 

certain type will cause the type of harm in question. Backward-looking 

causation, in contrast, is not interested in the potential to cause harm 

measured in probabilities; rather, it asks whether, based on everything 

the court or other decision-maker knows about the situation ex post, an 

act or event actually caused the harm in question. 

Legal systems understand the concept of causation to be 

backward looking, which leads to the application of the but-for test. 

Under the but-for test, any condition that was necessary for the harm to 

occur (i.e., absent which the harm would not have occurred in the 

situation at hand) is classified as a cause. While the but-for test has been 

analyzed and criticized for decades, it is remarkably persistent. By and 

large, the but-for test defines what legal systems believe factual 

causation is about. 

 

C. Causation in Statistics and Computer Science  

 During the last thirty years, computer scientists have become 

increasingly interested in the concept of causation. For their own 

inquiry, they started from the same concepts and distinctions familiar 

from legal and economic analysis, distinguishing between general or 

type causation and specific or actual causation.5 This distinction maps 

onto the one between forward-looking and backward-looking causation 

set out above.6  

 
4 See also WILLIAM M. LANDES & RICHARD A. POSNER, THE ECONOMIC 

STRUCTURE OF TORT LAW 229–34 (1987); Omri Ben-Shahar, Causation and 

Foreseeability, in MICHAEL FAURE, TORT LAW AND ECONOMICS 83, 85 (2009). 
5 JOSEPH Y. HALPERN, ACTUAL CAUSALITY 1 (2016). 
6 Id. at 2. 

https://chicagounbound.uchicago.edu/cgi/viewcontent.cgi?article=3867&context=uclrev
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 The major advances in computer science regarding causation will 

primarily affect the category of forward-looking or type causation. 

Questions that are familiar from product liability, licensing of drugs and 

vaccines, responsibility for potentially toxic agents in water and 

foodstuffs, medical malpractice, and other areas come to mind. As can 

be gleaned from legal disputes in these areas, the question of causation 

is at once crucial to the outcome and impossible to settle with certainty. 

Often, the issue of causation remains open for years or decades until 

science has advanced to the degree that the harmful features of a 

substance or product can easily be established. The examples of 

cigarette smoke,7 asbestos products, and the drug DES8 are on point.  

If it were possible to determine at a very early stage whether a 

particular product or substance was the cause of the harmful effects 

observed in the population, this would mean a huge advance for the well-

being of individuals and society at large. If the risks associated with a 

product could be identified early on through a computer-driven analysis 

of the available data, much harm could be averted and much litigation 

avoided. All it takes to realize these benefits is a computer program that 

understands causation, in the sense that it can “see” causal 

relationships. In other words—causal AI. 

 

III. From Correlation to Causation 

Without much effort, researchers may identify a relationship of 

dependence, or correlation, between two variables within a dataset, as 

one variable changes its value together with changes in the value of 

the other.  

 

A. Where We Come From: Correlation Does Not Imply Causation 

 With the birth of statistics as a discipline of the social sciences, 

the temptation arose to infer a type-level causal connection between two 

variables based on data that were collected or otherwise had become 

available. But to the present day, it is simply impossible to do so, at least 

on the basis of sets of observational data—data that were simply 

collected and not purposefully generated (for example, with the help of 

 
7 For a discussion about developing a causal relationship between 

smoking and lung cancer, see JUDEA PEARL & DANA MACKENZIE, THE BOOK 

OF WHY 167–87 (2018). 
8 See generally Glen O. Robinson, Multiple Causation in Tort Law: 

Reflections on the DES Cases, 68 VA. L. REV. 713 (1982). 

https://casetext.com/case/sindell-v-abbott-laboratories
https://www.rand.org/pubs/monographs/MG162.html
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1017077
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experiments). The analysis of observational data can only show a 

correlation between variables, but not a causal relationship. In this 

context, correlation means that the observation of event X changes the 

likelihood of observing event Y.9  

 Hume himself associated correlation with causation by employing 

the concept of regularity, as epitomized in his famous definition. 

Ordinary datasets reveal even less than Hume’s regularity condition, as 

correlation is non-directional; it is impossible to say whether Y follows 

X or X follows Y. So long as it remains impossible to infer causal 

relationships from the correlation between variables, the impact of 

statistics on causal reasoning remains limited, namely to the analysis of 

data drawn from experiments.  

 A few simple examples may help to illustrate the impossibility of 

inferring causation from correlation. If, on a weekday, the bells in the 

tower of Rockefeller Chapel strike five times to indicate that the time is 

5pm, then there is always heavy traffic on Lake Shore Drive. But it is 

obvious to anyone that the striking of the church bells does not cause 

heavy traffic. The two events, the striking of the bells and the traffic 

jam, are merely correlated. Different, independent factors explain why 

the church bells strike and why the traffic is heavy. 

Likewise, if ice cream sales increase with every additional degree 

of temperature, it is natural to infer that warm weather leads to 

additional consumption of ice cream.10 However, it can also be shown 

that when ice cream sales increase, crime rates go up. Again, it is 

intuitively clear that the sale of ice cream does not cause crime. The 

volume of ice cream sales and the crime rate are merely correlated, while 

there is a causal connection between warm weather and ice cream sales, 

and also between warm weather and the crime rate. Warm weather is a 

so-called confounder of the two independent phenomena. Together with 

hidden variables that are not included in the data (so-called colliders), 

confounders demonstrate why there is no bridge between correlation 

and causation.11  

 

 

 
9 PEARL & MACKENZIE, supra note 7, at 29.  
10 JUDEA PEARL, MADELYN GLYMOUR & NICHOLAS P. JEWELL, CAUSAL 

INFERENCE IN STATISTICS 53 (2016). For similar examples, see RICHARD 

MCELREATH, STATISTICAL RETHINKING 123–44 (2d ed. 2020). 
11 PEARL & MACKENZIE, supra note 7, at 219–34. 

https://fitelson.org/confirmation/hume_enquiry.pdf
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B. Within the Limitations of Experiments 

 Scientists who tried to establish a causal connection between a 

certain type of activity, agent, or event and another event (or, in the 

language of statistics, between X and Y) needed to resort to real-world 

experiments. The accepted mechanism for such a real-world experiment 

became the randomized controlled trial (RCT).12 RCTs are standard 

practice in many areas, including in the licensing of drugs. Before a drug 

is approved by the competent authorities, it must be shown that the drug 

has therapeutical effect—that it improves the patient’s health. This is 

done by forming two groups of patients, with all patients either having 

the same essential characteristics or being randomly chosen from the 

public, and then administering the drug to one group and a placebo to 

the other. If the treatment group fairs better than the control group, the 

therapeutic effect of the drug is established. 

 To this day, RCTs are the gold standard for establishing the 

causal connection between a condition and an effect, whether beneficial 

or detrimental. However, the method of random testing has serious 

limitations and disadvantages. To continue the example of a new 

medical treatment, drug testing comes with high costs and is contingent 

on preparatory trials and experiments—sometimes with animals—

before humans may be exposed to substances with hitherto unknown 

consequences. Still, health risks remain. When the focus is not on 

substances designed to improve human health, but on ones that may 

have detrimental effects, ethical concerns loom large. It is unethical and 

not permissible to force a group of people to ingest substances that are 

presumed to be toxic or unhealthy (e.g., to smoke intensively or to 

consume large portions of processed food over years) in order to measure 

the adverse consequences that one fears would be caused by such 

consumption patterns. 

The rise of computing and big data has further shifted the cost-

benefit analysis. While the generation of experimental data through 

RCTs is terribly expensive and often even unfeasible, repositories of so-

called observational data abound since the beginning of the digital 

revolution. The large internet companies, in particular, are in command 

of huge collections of observational data. Together with the 

computational power of up-to-date computers and the requisite 

software, these collections offer unique opportunities for statistical 

analysis. But as long as it remains impossible to read causation from 

 
12 Id. at 139–50. 
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observational data, these huge datasets are useless for causal analysis 

and thus for a better understanding of the world—as well as for the more 

expedient and precise, as well as less costly, operation of the legal 

system. 

 

C. The Innovation: Causal Graphs and Models 

 Over the last few decades, scientists have engaged with the 

concept of causation and worked to wrench causal inference from 

observational data—in other words, to disentangle causation and 

“mere” statistical association.13 The goal is to reliably distinguish 

between instances where variables are merely correlated with no 

causal relation existing, and others where a causal connection and its 

direction can indeed be identified. 

 The traditional strategy used in statistics to distinguish 

causation from correlation without an RCT is controlling for variables 

that were suspicious to be confounders of the variables that 

represented cause and effect. If X and Y depend on a third factor, Z, 

that influences both, then the fact that X and Y move in parallel 

represents mere correlation—meaning X does not cause Y, but Z 

causes X and Y. It is possible to “control for” the fact that Z qualifies as 

a confounding variable, namely by conditioning on Z, which means 

that the researcher separates different values or strata of Z and then 

looks at the relationship between X and Y with respect to those values 

or strata. If, after controlling in this way for Z, X and Y still move in 

parallel, a causal relationship is established. Or so it seems.  

 One problem with conditioning on a variable is that it may make 

things worse by suggesting interdependence of two variables where 

none exists. This happens when researchers condition on so-called 

colliders: variables that, when held constant, create a spurious 

correlation between two variables that are, in fact, independent but 

contribute to the collider variable.14 The collider problem looms rather 

large because controlling for a variable that is both a confounder for 

some variables (e.g. X and Y) and a collider for other variables (e.g. A 

and B) solves one problem by creating another. Thus, the effort is set 

back to its starting point: mere correlation does not establish 

causation. 

The “new statistics” setting in during the late 1990s and early 

2000s aimed to move beyond the stage of controlling for variables. The 

 
13 PEARL ET AL., supra note 10, at 53; MCELREATH, supra note 10, at 

128–31. 
14 PEARL & MACKENZIE, supra note 7, at 198–99. 

https://www.hachettebookgroup.com/titles/judea-pearl/the-book-of-why/9781541698963/?lens=basic-books
https://www.hachettebookgroup.com/titles/judea-pearl/the-book-of-why/9781541698963/?lens=basic-books
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new tools that promise to help draw the distinction between correlation 

and causation are Directed Acyclical Graphs (DAGs) and Structural 

Causal Models (SCMs). Such causal diagrams consist of a visualization 

of variables, together with arrows that link one variable to another. 

The arrows indicate the causal direction and are associated with 

mathematical equations which express the relationship between the 

two nodes connected by the arrow.  

Figure 1: Casual Diagram for Birth Weight 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Once a causal model has been developed and applied to a set of 

observational data, it serves to illuminate the causal landscape in ways 

unknown before.15 One benefit is that causal models help to infer 

missing variables and causal connections by intervening in the model 

and changing one variable while holding the others constant. Moreover, 

the combination of a causal model and data enables researchers to 

quantify the effects of interventions without experiments.16 This means 

that it is possible to obtain the insights that would be generated by an 

RCT without actually performing one.17 In addition, the application of 

the model to observational data provides information on the adequacy 

of the model itself. 

 The question remains as to where DAGs and SCMs come from. 

They do not fall from the sky, and they cannot be found in “nature.” On 

the other hand, they are more than the pure product of the researcher’s 

imagination. Causal models and DAGs are based on the best scientific 

 
15 PEARL ET AL., supra note 10, at 35–36. 
16 Id. at 28, 56. 
17 See id. at 53; PEARL & MACKENZIE, supra note 7, at 16–18. 
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knowledge available, together with plausible beliefs about cause-and-

effect relationships. 

 Causal diagrams cannot be drawn without knowledge about the 

world and the causal relations operating in it. Before drawing a DAG, 

the researcher must already know a lot not only about well-established 

causal relationships between the variables, but also about cause-and-

effect relationships that are merely plausible.18 In doing so, they have 

no other choice but to rely on the best science, meaning whatever 

objective knowledge about cause and effect is already available, and 

their best guess based on their subjective view of the world and how it 

operates.19 

 In other words, causal models are products of the human mind, 

and therefore fallible. If a deficient causal model is applied to a clean 

dataset, it will produce conclusions that are wrong. Thus, for the 

foreseeable future human oversight and control still seem 

indispensable. As the outcomes reached by the combination of structural 

causal models and observational data crucially depend on the design and 

properties of the model chosen, choosing the right model is critical. 

 

D. Digitalizing Causal Modelling 

 In view of the constant rise of computing power and AI software 

that is increasingly capable of developing and testing its own causal 

models, the automation of model generation itself has come within 

reach. The application of causal models to datasets itself provides a 

feedback loop that may be used as an internal control mechanism. As 

the model identifies dependencies and independencies between 

variables, it reveals information regarding the adequacy of the causal 

model itself.20 The same researchers who developed the field of causal 

inference in statistics have therefore also developed software tools that 

help to pick and choose the optimal causal model for a given research 

question given a dataset. 

 If this software worked perfectly, it would open the door to a fully 

automated analysis of causal relationships within a set of variables on 

which observational data are available. In this way, artificial 

intelligence would enable computers to autonomously identify causal 

relationships between variables in a set of observational data without 

 
18 JUDEA PEARL, CAUSALITY 67 (2000). 
19 See PEARL & MACKENZIE, supra note 7, at 89. 
20 PEARL ET AL., supra note 10, at 35, 48–50. 

https://perma.cc/6N5K-VSVT
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any human involvement. Computers could infer causation from the 

combination of observational data and a self-selected causal model. 

 To pour some water into the wine, the capability of causal models 

to “test themselves” with the help of software or to allow researchers to 

test the model for its fitness may still be limited to so-called endogenous 

variables: variables that were included in the causal model. The choice 

of variables will usually reflect the data that are available; where data 

are missing, variables remain undefined. Undefined variables are 

treated as part of the (unchartered) “world” and lumped together in the 

variable U.21 As so-called exogenous variables, these U-variables are 

excluded from causal models and treated as given. 

The problem is that within these hidden variables, a confounder 

may be buried that explains the dependence of Y on X. A hidden 

exogenous variable cannot be identified by controlling for an endogenous 

variable that sits in plain view. Thus, it seems that the accuracy of a 

causal model remains “internal,” in the sense that an accurate model is 

compatible with the dataset in question given the endogenous variables 

that the model contains. 

Figure 2: Causal Inferences—Internal vs. External Variables 

 
  

 
21 PEARL ET AL., supra note 10, at 26–27. With a view to actual 

causation, see HALPERN, supra note 5, at 13. 
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In the graph depicted above, the variable U is external to the causal 

model, which includes C, M, and E as internal variables (the dashed 

circle around U indicates as much). The dashed arrows from U to M and 

E suggest that U may have a causal effect on E as well as on M, and 

(indirectly) again on E. If so, these connections distort the causal 

inferences drawn from the graph, namely that C is a cause of E in two 

ways: direct and indirect, mediated through M. 

The frontier problem in the field of causal inference concerns the 

exogenous variables and their bearing on the adequacy and 

completeness of causal models. If it were possible to rule out, with the 

help of computer-assisted mathematical analysis, that any variables 

that remained exogenous to the model influence the endogenous 

variables in a way that distorts the causal model, including its 

structural equations, then causal analysis could be formalized and 

computerized in full. Computers equipped with the necessary software 

could take over and extrapolate causal relationships from sets of 

observational data. 

 

IV. Towards Casual AI 

 Once digital machines understand the concept of causation, one 

can speak of Causal AI. This will mark a major step in the development 

of digital systems truly deserving the label of artificial intelligence. With 

an understanding of causation, many errors and hallucinations that are 

characteristic of the current generation of large language models will 

disappear. With this, foundational models will advance to the next 

power level. 

 Causal AI will likely have a huge impact in different fields of 

science and learning. Once it is possible for a digital system to 

distinguish between correlation and causation in a pool of dependent 

variables, it can “see” causal relationships within a set of observational 

data. In the age of Big Data, such datasets are readily available at very 

low cost. It must therefore be expected that, with the arrival of Causal 

AI, knowledge about cause-effect relationships will increase 

dramatically in all areas, as if humanity were equipped with a visual 

aid that did not exist before. 

From the perspective of the legal system, when assessing risk— 

either ex ante, for the purpose of regulating behavior or licensing drugs 

and other products, or ex post, in litigating liability for harm actually 

caused—Causal AI may play out its strengths and resolve uncertainties 
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and controversies within a blink of an eye that hence have taken years 

or decades to resolve. To be sure, with all this good news, there may also 

be risks associated with the use of Causal AI—but their examination 

remains for another day. 

 

* * * 
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