Causal AI is within reach. It has the potential to trigger nothing less than a conceptual revolution in the law. This Essay explains why and takes a cautious look into the crystal ball. Causation is an elusive concept in many disciplines—not only the law, but also science and statistics. Even the most up-to-date artificial intelligence systems do not “understand” causation, as they remain limited to the analysis of text and images. It is a long-standing statistical axiom that it is impossible to infer causation from the correlation of variables in datasets. This thwarts the extraction of causal relations from observational data. But important advances in computer science will enable us to distinguish between mere correlation and factual causation. At the same time, artificially intelligent systems are beginning to learn how to “think causally.”
Technology Regulation
A recurrent problem in adapting law to artificial intelligence (AI) programs is how the law should regulate the use of entities that lack intentions. Many areas of the law, including freedom of speech, copyright, and criminal law, make liability turn on whether the actor who causes harm (or creates a risk of harm) has a certain intention or mens rea. But AI agents—at least the ones we currently have—do not have intentions in the way that humans do. If liability turns on intention, that might immunize the use of AI programs from liability. We think that the best solution is to employ objective standards that are familiar in many different parts of the law. These legal standards either ascribe intention to actors or hold them to objective standards of conduct.
The internet has drastically altered our notion of the press.
Lee Fennell’s Slices and Lumps: Division and Aggregation in Law and Life reveals the benefits of isolating configurations in legal analysis. A key characteristic of configurations, or “lumps” whether found or created, is that they are indivisible.